Sign in
Explore Diverse Guest Blogging Opportunities on CSMIndustry.de
Your Position: Home - Punching Machines - Metal Stamping Advantages and Disadvantages
Guest Posts

Metal Stamping Advantages and Disadvantages

Aug. 19, 2024

Metal Stamping Advantages and Disadvantages

Metal stamping is a manufacturing process that converts metal sheets into specific shapes by using high-pressure presses and dies. This method serves a variety of industries including automotive, aerospace, electronics, and consumer goods. While metal stamping offers several benefits, it also comes with certain limitations. This article delves into the advantages and disadvantages of metal stamping, exploring factors like cost-effectiveness, production speed, and material constraints.

Read more

Advantages of Metal Stamping

Metal stamping offers several significant advantages that make it a desirable choice for mass production in various industries. The following sections highlight some of these benefits.

Cost Effectiveness

Metal stamping is renowned for its cost-effectiveness, particularly in high-volume production. The process is capable of producing a large number of complex parts quickly. After creation, the die enables the stamping process to churn out components at high speeds, reducing labor costs. Thus making it ideal for high-volume production runs. In addition, stamping minimizes material waste by efficiently using metal sheets, which are the raw material for the process. Consequently, the cost per part is reduced, making the process more economical, especially for large-scale manufacturing.

Efficiency in Production

Although metal stamping could be manual, it can also be a highly automated process. This reduces the need for manual intervention and increases production efficiency. Automation also lowers the risk of human error, enhancing overall product quality. When deployed with automation, like in progressive metal stamping, the high-speed nature of stamping allows for fast production cycles. This is advantageous for meeting tight deadlines and high-demand situations, such as large products.

Precision and Consistency

Metal stamping ensures high precision and repeatability, producing consistent parts in terms of dimensions and quality. This consistency is crucial for industries requiring tight tolerances and uniform product quality such as aerospace, automotive, and in medical device manufacturing. When the right tooling is deployed, this process can create complex shapes and intricate designs that are difficult or impossible to achieve with other manufacturing methods.

Metal Stamping delivers Consistency and Precision

Sustainability

Metal stamping is an environmentally friendly process that reduces waste and minimizes the use of raw materials. The process produces minimal scrap metal, reducing the amount of waste sent to landfills. This also means less energy is expended on recycling, thereby minimizing the environmental impact of manufacturing.

Versatility

Metal stamping works with a wide range of metals, including steel, aluminum, copper, and titanium. This versatility allows manufacturers to select the most suitable material for their specific application. Also, this process produces components of various sizes and shapes, from small electronic connectors to large automotive parts. Hence, making it suitable for a broad array of industries.

Disadvantages of Metal Stamping

Despite all the advantages of metal stamping, there are still disadvantages that could deter manufacturers from using this process.

Metal Stamping Materials

While metal stamping can accommodate a wide range of metals, it primarily suits ductile materials. This is because ductile metals can withstand the high pressures of this manufacturing process. If a brittle metal is used, it may crack or break, resulting in poor-quality products. Another material limitation of this manufacturing method is the thickness of the metal. Metal stamping is most effective with thin to moderately thick metal sheets. If the material is too thin, it may be subject to wrinkling, tearing, cracking, or excessive deformation. However, if it is too thick, the press or die may wear or damage, resulting in a reduction in the precision of products.

High Tooling Costs

Creating dies and setting up the stamping press can be expensive. This is especially true for complex designs, and in projects where production runs are small, this process may not be feasible. In addition, dies and stamping equipment require regular maintenance to ensure consistent quality. Over time, dies wear out and need replacement, adding to the overall cost of the process.

Maintenance and Running Costs

Setting up metal stamping equipment and fine-tuning the process can be time-consuming. Changes in design or materials may require adjustments to tooling, impacting production schedules. Additionally, the wear and tear on these tools can lead to increased maintenance costs over time.

Design Limitations of Metal Stamping

Although metal stamping can produce intricate shapes, the process can also have limits to the complexity. Highly complex geometries may require multi-step processes or alternative manufacturing methods. Also, this process is less flexible on the type of designs available for small batches or prototypes where design changes are frequent.

Despite efficient material usage, metal stamping still produces some scrap metal, which needs management and recycling. Resolving issues with this waste adds to environmental concerns. Also, stamping presses and machinery consume significant amounts of energy, which impacts operational costs and environmental footprint.

The Right Metal Stamping for You

Metal stamping remains a vital manufacturing process due to its cost-effectiveness, precision, and versatility. It excels in high-volume production scenarios where consistent quality and fast turnaround times are essential. However, the high initial tooling costs, material constraints, and environmental considerations are important factors. So, manufacturers need to weigh both the advantages and disadvantages of metal stamping when deciding on which method to deploy. At ITD, we boast of several decades experience in metal stamping. Our team can help you identify and fulfill your metal stamping needs, as we take away your manufacturing burdens. Contact us today to get started.

Understanding Metal Stamping

Metal stamping is a cold-forming process that makes use of dies and stamping presses to transform sheet metal into different shapes. Pieces of flat sheet metal, typically referred to as blanks, is fed into a stamping press that uses a tool and die surface to form the metal into a new shape. Production facilities and metal fabricators offering stamping services will place the material to be stamped between die sections, where the use of pressure will shape and shear the material into the desired final shape for the product or component.

This article describes the metal stamping process and steps, presents the types of stamping presses typically employed, looks at the advantages of stamping compared to other fabrication processes, and explains the different types of stamping operations and their applications.

Basic Concepts of Metal Stamping

Metal stamping, also referred to as pressing, is a low-cost high-speed manufacturing process that can produce a high volume of identical metal components. Stamping operations are suitable for both short or long production runs, and be conducted with other metal forming operations, and may consist of one or more of a series of more specific processes or techniques, such as:

  • Punching
  • Blanking
  • Embossing
  • Coining
  • Bending
  • Flanging

Punching and blanking refer to the use of a die to cut the material into specific forms. In punching operations, a scrap piece of material is removed as the punch enters the die, effectively leaving a hole in the workpiece. Blanking, on the other hand, removes a workpiece from the primary material, making that removed component the desired workpiece or blank.

Embossing is a process for creating either a raised or recessed design in sheet metal, by pressing the raw blank against a die that contains the desired shape, or by passing the material blank through a roller die.

Coining is a bending technique wherein the workpiece is stamped while placed between a die and the punch or press. This action causes the punch tip to penetrate the metal and results in accurate, repeatable bends. The deep penetration also relieves internal stresses in the metal workpiece, resulting in no spring back effects.

Bending refers to the general technique of forming metal into desired shapes such as L, U, or V-shaped profiles. The bending process for metal results in a plastic deformation which stresses above the yield point but below the tensile strength. Bending typically occurs around a single axis.

Flanging is a process of introducing a flare or flange onto a metal workpiece through the use of dies, presses, or specialized flanging machinery.

Metal stamping machines may do more than just stamping; they can cast, punch, cut and shape metal sheets. Machines can be programmed or computer numerically controlled (CNC) to offer high precision and repeatability for each stamped piece. Electrical discharge machining (EDM) and computer-aided design (CAD) programs ensure accuracy. Various tooling machines for the dies used in the stampings are available. Progressive, forming, compound, and carbide tooling perform specific stamping needs. Progressive dies can be used to create multiple pieces on a single piece simultaneously.

Types of Stamping Operations

Progressive die stamping

Progressive die stamping uses a sequence of stamping stations. A metal coil is fed into a reciprocating stamping press with progressive stamping dies. The die moves with the press, and when the press moves down the die closes to stamp the metal and form the part. When the press moves up, the metal moves horizontally along to the next station. These movements must be precisely aligned as the part is still connected to the metal strip. The final station separates the newly-fabricated part from the rest of the metal. Progressive die stamping is ideal for long runs, because the dies last a long time without becoming damaged, and the process is highly repeatable. Each step in the process performs a different cut, bend, or punching operation on the metal, thus gradually achieving the desired end-product shape and design. It is also a faster process with a limited amount of wasted scrap.

Transfer Die Stamping

Transfer die stamping is similar to progressive die stamping, but the part is separated from the metal trip early on in the process and is transferred from one stamping station to the next by another mechanical transport system, such as a conveyor belt. This process is usually used on larger parts that may need to be transferred to different presses.

Four-Slide Stamping

Four-slide stamping is also called multi-slide or four-way stamping. This technique is best-suited for crafting complex components that have numerous bends or twists. It uses four sliding tools, instead of one vertical slide, to shape the workpiece through multiple deformations. Two slides, or rams, strike the workpiece horizontally to shape it, and no dies are used. Multi-slide stamping can also have more than four moving slides.

Four-slide stamping is a very versatile type of stamping, as different tools can be attached to each slide. It also has a relatively low cost, and production is fast.

Fine Blanking

Fine blanking, also known as fine-edge blanking, is valuable for providing high accuracy and smooth edges. Usually done on a hydraulic or mechanical press, or by a combination of the two, fine blanking operations consist of three distinct movements:

  1. Clamping of the workpiece or work material in place
  2. Performance of the blanking operation
  3. Ejection of the finished part

Fine blanking presses operate at higher pressures than those used in conventional stamping operations, hence tools and machinery need to be designed with these higher operating pressures in mind.

The edges that are produced from fine blanking avoid fractures as produced with conventional tooling and surface flatness can exceed that available from other stamping methods. Since it is a cold extrusion technique, fine blanking is a single-step process, reducing the overall costs of fabrication.

Types of Stamping Presses

The three common types of stamping presses include mechanical, hydraulic, and mechanical servo technologies. Usually, presses are linked to an automatic feeder that sends sheet metal through the press either in coil or blank form.

Aomate Product Page

Mechanical

Mechanical presses use a motor connected to a mechanical flywheel to transfer and store energy. Their punches can range in size from 5mm to 500mm, depending on the particular press. Mechanical pressing speed also varies, usually falling between the range of twenty and 1,500 strokes per minute, but they tend to be faster than hydraulic presses. These presses can be found in an array of sizes that stretch from twenty to 6,000 tons. They are well-suited for creating shallower and simpler parts from coils of sheet metal. They&#;re usually used for progressive and transfer stamping with large production runs.

Hydraulic

Hydraulic presses use pressurized hydraulic fluid to apply force to the material. Hydraulic pistons displace fluid with a force level proportional to the diameter of the piston head, allowing for an advanced degree of control over the amount of pressure, and a more consistent pressure than a mechanical press. Additionally, they feature adjustable stroke and speed capabilities, and can typically deliver full power during any point in the stroke. These presses usually vary in size from twenty to 10,000 tons and offer stroke sizes from about 10mm to 800mm.

Hydraulic presses are usually used for smaller production runs to create more complicated and deeper stampings than mechanical presses. They allow for more flexibility because of the adjustable stroke length and controlled pressure.

Mechanical Servo

Mechanical servo presses use high capacity motors instead of flywheels. They are used to create more complicated stampings at a faster speed than hydraulic presses. The stroke, slide position and motion, and the speed are controlled and programmable. They are powered by either a link-assisted drive system or a direct drive system. These presses are the most expensive of the three types discussed.

Types of Stamping Dies

Dies that are used in metal stamping operations can be characterized as either single-station or multiple-station dies.

Single-station dies include both compound dies and combination dies. Compound dies perform more than one cutting operation in a single press, such as the case of the multiple cuts needed to create a simple washer from steel.

Combination dies are ones which incorporate both cutting and non-cutting operations into a single press stroke. An example might be a die that produces a cut as well as a flange for a given metal blank.

Multi-station dies include both progressive dies and transfer dies, where notching, punching, and cutting operations occur in sequence from the same die-set.

Steel rule dies, also referred to as knife dies, are were initially used with softer materials such leather, paper, or cardboard, but have also found application in cutting and shaping of metals including aluminum, copper, and brass. The steel strip material used for the cutting surface is designed to match the desired shape, and a slot is cut into the die shoe to hold the steel rule material. The characteristics of the material to be cut, such as its thickness and hardness, help establish the steel rule thickness to be used in the cutting blade.

Material Considerations

The choice of metal stamping materials used depends on the desired attributes of the finished piece. Stamping is not limited as a fabrication process to just metals &#; there are numerous materials that can be processed through stamping techniques, such as paper, leather, or rubber, but metals are by far the most commonly used.

In general, metals tend to maintain their malleability and ductility after stamping. Those used in precision stamping usually range from soft to medium hardness and carry a low coefficient of flow. Some of the customary metals and metal types fabricated through stamping include:

  • Precious metals, such as silver, gold, and platinum
  • Ferrous metals, especially iron-based alloys like stainless steel
  • Non-ferrous metals, such as bronze, brass, and zinc
  • Non-standard alloys, such as beryllium nickel and beryllium copper

Ferrous metals are commonly used in stamping operations, as their low carbon content means they are among the least expensive options available resulting in low unit production costs.

Several important factors and design considerations need to be addressed when performing metal stamping operations.

Finishing Operations

Post-stamping production operations can include having the stamped product going through deburring, tapping, reaming, and counterboring processes. These allow for the addition of other parts to be added to a stamped piece or for the correction of imperfections in finish or removal of sharp edges that may impact safety.

Deburring involves the removal of shards of cut material that remain on the workpiece after the stamping operation has been completed. Sharp edges may require grinding to remove burrs or may need to be flanged over to produce a smoothed edge and to direct the burred edge to the inside fold where it will not cause injuries or be noticed cosmetically.

Design Concepts

Overly narrow projections should generally be avoided in stamped products, as these may be more easily distorted and impact the perception of quality in the finished product.

Where possible, designs should be based on the use of existing dies for standard shapes and bends. The need to create a custom die for stamping will increase initial tooling costs.

Avoidance of sharp internal and external corners in stamped product designs can help reduce the potential for the development of larger burrs in these areas and sharp edges that require secondary treatment to remove. Also, a great potential for stress concentrations exists in sharp corners, which may cause cracking or subsequent failure of the part through extended use.

Overall dimensions for the finished product are going to be limited by the available dimensions of the sheet metal sheets or blanks, and these limits need to be factored for the material consumed in folds on edges or flanges and any additional material removal or use. Very large products may need to be created in multiple steps and mechanically joined together as a second step in the production process.

For punching operations, consider both the direction of punching as well as the size of the punched feature. Generally, it is best to do punching in one direction, so that any sharp edges produced by the punch will all be on the same side of the workpiece. These edges can then be hidden for appearance purposes and kept away from general access by workers or product end-users where they might represent a hazard. Punched features should reflect the thickness of the raw material. A general rule is that punched features should be at least twice the material thickness in size.

For bends, the minimum bend radius in sheet metal is roughly the same as the material thickness. Smaller bends are more difficult to achieve and may result in points of stress concentration in the finished part that may subsequently cause issues with product quality.

When drilling or punching holes, performing these operations in the same step will help to assure their positioning, tolerance, and repeatability. As general guidelines, hole diameters should be no smaller than the material thickness, and the minimum spacing of holes should be at least twice the material thickness apart from each other.

Bending operations should be performed with awareness of the risk or distorting the material, as the material on the interior and exterior surfaces of the bend point are compressed and stretched respectively. The minimum bend radius should be approximately equal to the thickness of the workpiece, again to avoid stress concentration build up. Flange lengths should be more like three times the workpiece thickness as a good practice.

Stamping Advantages and Disadvantages

Some of the benefits of stamping include lower die costs, lower secondary costs, and a high level of automation compared to other processes. Metal stamping dies tend to be relatively less expensive to produce and maintain than those used in other common processes. The secondary costs, such as cleaning and plating, are also cheaper than similar treatments for other metal fabrication processes. Stamping machines are relatively easy to automate and can employ high-end computer-control programs that provide greater precision, faster production, and quicker turnaround times. The high level of automation also lowers the cost of labor.

One of the disadvantages of stamping is the higher cost of presses. The dies must also be acquired or created, and producing custom metal stamping dies is a longer pre-production process. Dies can also be difficult to change if the design must be altered during production.

Applications

Stamping is used in a variety of applications, especially those involving three-dimensional designs, lettering, or other surface engraving features. Such stamping products are commonly produced for home appliance manufacturers, automotive companies, telecommunications services, aerospace industries, medical equipment manufacturers, and electronics companies. Odds are you have a product in your home that has parts created through metal stamping because it is a process used in everything from your household appliances to your cars.

The specific products and components can range from simple stamping items, such as metal clips, springs, weights, washers, and brackets, to more complex designs, such as those found in engine bases or friction plates. This process is used for producing both parts for large machinery and also incredibly detailed small parts. Micro-precision stamping can create parts with diameters of up to 0.002 inches.

Electronic stampings are electronic components manufactured through the metal stamping process. They are used in a variety of industries, from home electronics and appliances to telecommunications and aerospace. Electronic stampings are available in a number of metals, including copper, copper alloys, aluminum, and steel, as well as more expensive metals, such as platinum and gold. Electronic components produced by the metal stamping method include terminals, contacts, lead frames, springs, and pins. They can be created from ferrous or nonferrous materials. Metal stampings find wide use in computers, electronic equipment, and medical devices. Because of the specialized shapes that can be made by the various stamping processes, many electronics are made by this cold forming process.

 

Original Source: https://www.thomasnet.com

 

Contact us to discuss your requirements of stamping press cost-effective solutions. Our experienced sales team can help you identify the options that best suit your needs.

Comments

0 of 2000 characters used

All Comments (0)
Get in Touch

  |   Apparel   |   Automobiles   |   Personal Care   |   Business Services   |   Chemicals   |   Consumer Electronics   |   Electrical Equipment   |   Energy   |   Environment